Hoffman, Gabriel
2018-11-21 18:34:33 UTC
I am developing a statistical model and I have a prototype working in R code. I make extensive use of sparse matrices, so the R code is pretty fast, but hoped that using RCppEigen to evaluate the log-likelihood function could avoid a lot of memory copying and be substantially faster. However, in a simple example I am seeing that RCppEigen is 3-5x slower than standard R code for cholesky decomposition of a sparse matrix. This is the case on R 3.5.1 using RcppEigen_0.3.3.4.0 on both OS X and CentOS 6.9.
Since this simple operation is so much slower it doesnt seem like using RCppEigen is worth it in this case. Is this an issue with BLAS, some libraries or compiler options, or is R code really the fastest option?
Here is my example:
library(Matrix)
library(inline)
# construct sparse matrix
#########################
# construct a matrix C that is N x X with S total entries
N = 10000
S = 1000000
i = sample(1:1000, S, replace=TRUE)
j = sample(1:1000, S, replace=TRUE)
idx = i >= j
values = runif(S, 0, .3)
X = sparseMatrix(i=i, j=j, x = values, symmetric=FALSE )
C = as(crossprod(X), "dgCMatrix")
# check sparsity fraction
S / N^2
# define RCppEigen code
CholeskyCppSparse<-'
using Rcpp::as;
using Eigen::Map;
using Eigen::SparseMatrix;
using Eigen::MappedSparseMatrix;
using Eigen::SimplicialLLT;
// get data into RcppEigen
const MappedSparseMatrix<double> Sigma(as<MappedSparseMatrix<double> >(Sigma_in));
// compute Cholesky
typedef SimplicialLLT<SparseMatrix<double> > SpChol;
const SpChol Ch(Sigma);
'
CholSparse <- cxxfunction(signature(Sigma_in = "dgCMatrix"), CholeskyCppSparse, plugin = "RcppEigen")
# compare times
system.time(replicate(10, chol( C )))
# output:
# user system elapsed
# 0.341 0.014 0.355
system.time(replicate(10, CholSparse( C )))
# output:
# user system elapsed
# 1.639 0.046 1.687
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices datasets utils methods base
other attached packages:
[1] inline_0.3.15 Matrix_1.2-15
loaded via a namespace (and not attached):
[1] compiler_3.5.1 RcppEigen_0.3.3.4.0 Rcpp_1.0.0
[4] grid_3.5.1 lattice_0.20-38
Changing the size of the matrix and the number of entries does not change the relative times
Thanks,
- Gabriel
[[alternative HTML version deleted]]
Since this simple operation is so much slower it doesnt seem like using RCppEigen is worth it in this case. Is this an issue with BLAS, some libraries or compiler options, or is R code really the fastest option?
Here is my example:
library(Matrix)
library(inline)
# construct sparse matrix
#########################
# construct a matrix C that is N x X with S total entries
N = 10000
S = 1000000
i = sample(1:1000, S, replace=TRUE)
j = sample(1:1000, S, replace=TRUE)
idx = i >= j
values = runif(S, 0, .3)
X = sparseMatrix(i=i, j=j, x = values, symmetric=FALSE )
C = as(crossprod(X), "dgCMatrix")
# check sparsity fraction
S / N^2
# define RCppEigen code
CholeskyCppSparse<-'
using Rcpp::as;
using Eigen::Map;
using Eigen::SparseMatrix;
using Eigen::MappedSparseMatrix;
using Eigen::SimplicialLLT;
// get data into RcppEigen
const MappedSparseMatrix<double> Sigma(as<MappedSparseMatrix<double> >(Sigma_in));
// compute Cholesky
typedef SimplicialLLT<SparseMatrix<double> > SpChol;
const SpChol Ch(Sigma);
'
CholSparse <- cxxfunction(signature(Sigma_in = "dgCMatrix"), CholeskyCppSparse, plugin = "RcppEigen")
# compare times
system.time(replicate(10, chol( C )))
# output:
# user system elapsed
# 0.341 0.014 0.355
system.time(replicate(10, CholSparse( C )))
# output:
# user system elapsed
# 1.639 0.046 1.687
sessionInfo()
R version 3.5.1 (2018-07-02)Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices datasets utils methods base
other attached packages:
[1] inline_0.3.15 Matrix_1.2-15
loaded via a namespace (and not attached):
[1] compiler_3.5.1 RcppEigen_0.3.3.4.0 Rcpp_1.0.0
[4] grid_3.5.1 lattice_0.20-38
Changing the size of the matrix and the number of entries does not change the relative times
Thanks,
- Gabriel
[[alternative HTML version deleted]]